

US005417983A

United States Patent [19]

Nagase et al.

[11] Patent Number:

5,417,983

[45] Date of Patent:

May 23, 1995

[54] DRUG RELEASE CONTROLLING MATERIAL RESPONSIVE TO CHANGES IN TEMPERATURE

[75] Inventors: Yu Nagase; Takao Aoyagi, both of Sagamihara; Fusae Miyata, Tokyo,

all of Japan

[73] Assignee: Sagami Chemical Research Center,

Tokyo, Japan

[21] Appl. No.: 338,187

Feb. 19, 1992 [JP]

[22] Filed: Nov. 9, 1994

Related U.S. Application Data

[63] Continuation of Ser. No. 111,596, Aug. 25, 1993, abandoned, which is a continuation-in-part of Ser. No. 18,434, Feb. 16, 1993, abandoned.

[30] Foreign Application Priority Data

4-137614	Japan	[JP]	ay 1, 1992	M
A61K 9/00			Int. Cl.6	[51]
424/487; 424/486;			U.S. Cl.	[52]
424/489; 424/451; 424/409;	24/426;	473; 4	424/4	
525/450-525/921-525/937-	24/550-	105. 5	424/	

Japan 4-69750

526/292.4; 526/298; 526/320; 526/321;

[56] References Cited

U.S. PATENT DOCUMENTS

3,700,643	10/1972	Smith et al	
4,540,809	9/1985	Yokoshima et al	560/185
4,632,975	12/1986	Cornell et al	528/354
4,692,336	9/1987	Eckenhoff et al	424/468
5,053,228	10/1991	Mori et al	424/486
5,139,790	8/1992	Snipes	424/435

5,330,768 7/1994 Park et al. 425/501

FOREIGN PATENT DOCUMENTS

1001149 8/1989 Belgium .

OTHER PUBLICATIONS

Die Makromolekulare Chemie, vol. 188, No. 10, pp. 2267–2275, Oct. 1987, Y. Gnanou, et al., "Synthesis of Poly(ϵ -Caprolactone) Macromonomers".

Primary Examiner—Mark Nagumo Attorney, Agent, or Firm—Oblon, Spivak, McClelland, Maier & Neustadt

[57] ABSTRACT

The present invention related to a drug release controlling material responsive to changes in temperature comprising the polyester gel which is obtained by polymerization of a polyfunctional macromonomer represented by the general formula (I):

$$\begin{array}{ccc}
O & X^1 & (I) \\
\parallel & I \\
R^1_m C & C + C + C + C - C = C + C + C + C
\end{array}$$

wherein R¹ represents a hydrogen atom or an alkyl group having from 1 to 6 carbon atoms, X¹ represents a hydrogen atom, a halogen atom, a cyano group, an alkyl group having from 1 to 6 carbon atoms or a phenyl group, A represents an aliphatic polyester chain, m is 0 or 1, and p, which may be the same or different in each branched chain, represents an integer of from 0 to 6, optionally with a polyethylene glycol derivative which contains polymerizable group(s) at the end(s). The drug release controlling material has an on-off control function of drug release responsive to changes in temperature depending upon the gel transition of the aliphatic polyester gel.

4 Claims, 13 Drawing Sheets